# Reducing the Threat of Nuclear, Biological, and Chemical Proliferation and Terrorism

Don Cobb and Walt Kirchner November 4, 1996 TWG Briefing

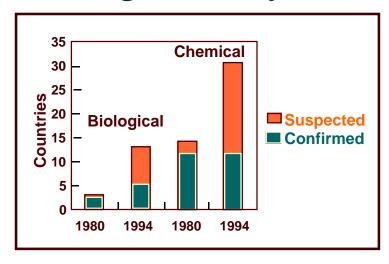
### Strategic direction

Strengthen and apply the Laboratory's science and technology base to reducing the threat of nuclear, biological, and chemical (NBC) proliferation and terrorism

## Tactical goal

- Support establishing a national agenda for reducing the threat of NBC proliferation and terrorism
- ◆ Broaden the DOE's role to include the biological and chemical threat areas
- Position Los Alamos as a major resource with DOE, DoD, the intelligence community, and other federal agencies

# Why are Biological/Chemical Weapons a Serious Threat?


Revolutionary advances in biotechnology coupled with potential use by rogue states and terrorists

- **♦** Accelerating global availability of bio-information
- ◆ Increasing numbers of bio-trained personnel worldwide
- Growing number of international technology suppliers
- **♦** Improving indigenous capabilities

Real and increasing threat of chemical agent use by states

and terrorists

- ♦ Iran-Iraq war
- ♦ Gulf war
- **♦** Tokyo subway incident
- **♦** Libya



# Tactic 4: LANL/Harvard National Conference

- **♦** Invited experts in NBC
- ♦ Domenici, Glenn, Lugar, Nunn, Stevens
- ♦ Leaders from government agencies and other DOE labs
- Heighten awareness /aid legislation
- Successful

### Addresses success measures and targets 1, 2 & 3

◆ Promoting development of national policies, support DOE/NN, establish a role for LANL

## **National Conference**



#### Work with other federal sponsors . . .

- **♦** DoD/Chemical and Biological Matters
- DoD/Counterproliferation Support Program
- Counterterrorism Technical Support Working Group
- **♦** DCI Nonproliferation Center
- CIA
- ◆ CIA/Office of Weapons, Technology and Proliferation/Nuclear, Chemical and Biological Division
- DIA/TWP
- ♦ HHS/PHS/CDC
- **♦** Additional organizational contacts are in process

### Addresses success measures and targets 1 & 3

◆ Briefings — establishing LANL role in national program in support of DOE, DoD, and other federal agencies

Strengthen efforts to control BW/CW materials, technology and expertise . . .

#### Tactic 6

Develop in-field assessment, protection . . .

**Work in Progress** 

Establish a program development team . . . identify needs and gaps and match them with Lab capabilities

- ◆ "Gang of > 4"
  - ◆ W. Davidson, R. Okinaka, J. Phillips, J. Prommel, P. Stoutland, T. Suchocki
- Technical Teams
  - ◆ CIC, CISA, CST, EES, LS, NIS, T, TSA, X
- ◆ Identification of applicable LANL capabilities and opportunities
- TriLab partnering

Addresses success measures and targets 1 & 2

 Promoting national policy – working with DOE/NN and TriLab

# FY96 IPD and LDRD/PD Projects

FY96 IPD \$465K

FY96 LDRD/PD \$400K

IPD: Technical Guidance by "Gang of > 4"

IPD: Bio Weapons Briefings/Education

**IPD:** Integrated Sensor Development

**IPD: Decontamination Assessment** 

**IPD: Scenario Development** 

PD: Biological and Chemical Agent Detection

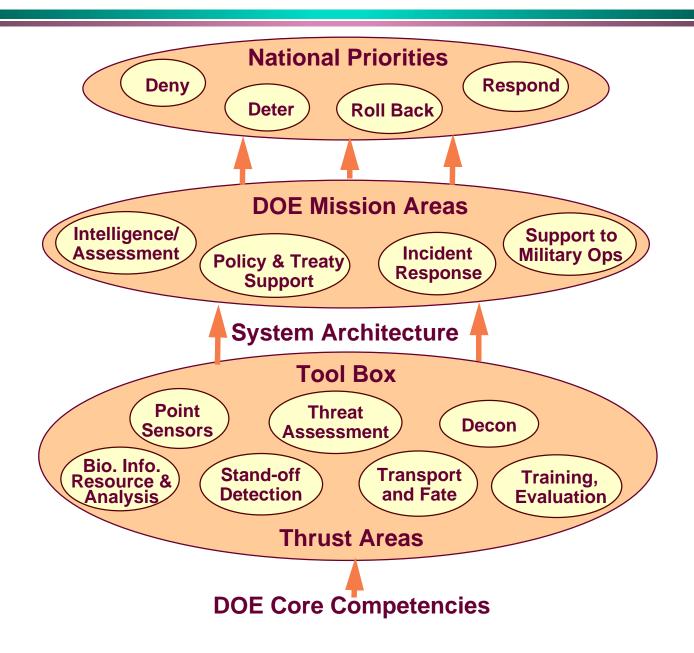
PD: Data Applications for Information Analysis

PD: Universal Biological Agent Point Sensor Program

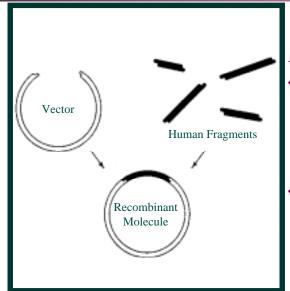
PD: Smart Film Sensors for CW Agents

PD: Detection and Characterization of Bio Weapons Agents

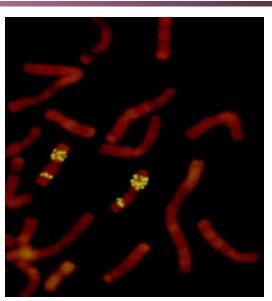
PD: Sensors for Detection of Bio/Chemical Warfare Agents


Work with DOE's Office of Nonproliferation and National Security (DOE-NN) . . . to develop a DOE strategy for reducing the NBC threat

- ◆ Nunn/Lugar/Domenici legislation
  - **◆** Congressional testimony by Cobb/Kirchner
  - **♦** National Conference, May 1996
- ◆ Science Council & Program Plan for Chem/Bio WMD
  - **◆** TriLab Response to 7 Thrusts (10/96)
  - **♦** \$17M in FY97
  - **♦** \$204M over 5 years
- ◆ Strong R&D component, utilizing Lab core competencies

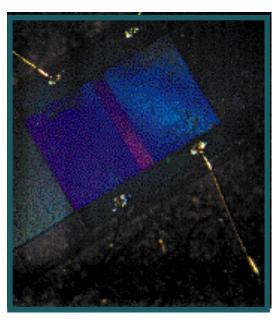

#### Addresses success measures and targets 1 & 2

 Promote development of policy through conferences, briefings, testimony – expand role of DOE/NN


## **Program Builds on DOE Core Competencies through Thrust Areas to address National Needs**

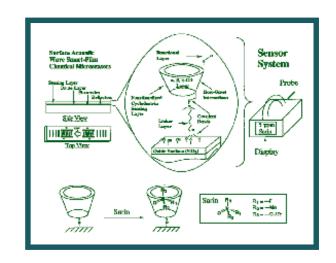


## **LANL Center for Human Genome Studies**

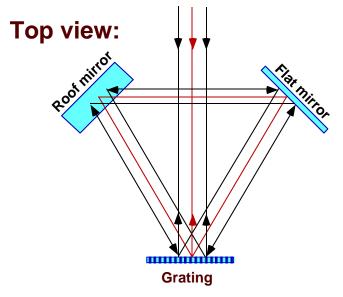


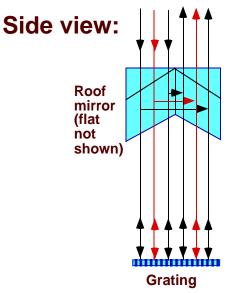

- ♦ DNA libraries
  - Cloning for mapping and sequencing
- ◆ Mapping the genome →
  - Locating disease genes
  - Developing strategies
- DNA sequencing
  - ◆ Determining linear order of the genome
- Computational biology
  - ◆ Deciphering a biological *program*




|                | 31                                                                                                                             | GMA: Eleme | int Properties      |       |
|----------------|--------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|-------|
| Type:<br>Name: | ±j Course<br>S33                                                                                                               | d Clone    |                     |       |
| Description:   | from Los Alamos flow-sorted library                                                                                            |            |                     | П     |
| Left End:      | 0.03548                                                                                                                        | Total B    | M End: 0.3551       |       |
|                |                                                                                                                                | Objective  |                     |       |
| Mir. Langth:   | 28500                                                                                                                          | 11 to      | Max. Length: 4100   | be    |
| felationships: | Cell Line CY18 (Contained Witten - 38)<br>Cell Line N-BHSS (Contained Witten - 38)<br>Cell Line N-TH2C (Contained Witten - 38) |            |                     | 19 10 |
|                |                                                                                                                                |            | larned Wilton - 340 | 78    |
|                | Cell Line                                                                                                                      | CY15 (Does | Not Overlap - 36)   | OH.   |
|                |                                                                                                                                |            | n Not Overlap - 98) | ш     |
|                | Cell Line CY165 (Does Not Overlap - 98)<br>Cell Line CY160 (Does Not Overlap - 98)                                             |            |                     |       |
| Relationship:  | r) Contain                                                                                                                     | ned Within | Likelihood: 50      |       |
| Min. Diet:     |                                                                                                                                | ti bp      | Max. Dist:          |       |
| Source:        | # Hybrid                                                                                                                       | cation     |                     |       |
|                | App                                                                                                                            | (4)        | Reset               |       |

# **Smart Film Sensors for CW Agents**





- Smart film coatings based on molecular recognition and direct covalent attachment to species selective reagents to transducer surface
  - Avoid false positives (pesticides)
  - **♦** Avoid false negatives (mixtures)

- **♦** Real-time, sensitive, rugged
- **♦** Low-power requirements
- Ability to distinguish between CW agents
- Ability to deal with complex mixture



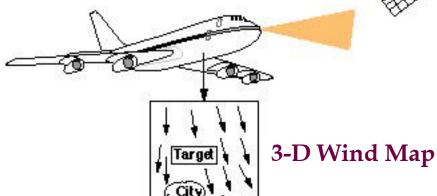
# Spatial Heterodyne Spectroscopy (SHS)



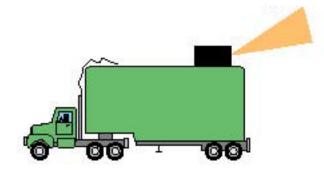


#### **Description**

- New type IR Fourier transform spectrometer
- No moving parts, high spectral resolution
- Concentrates resolution in narrow bandwidth

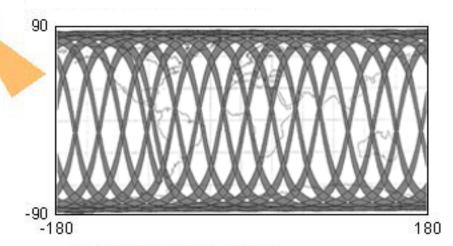

#### **Application**

- ◆ Spaceborne or airborne instrument for sensitive detection of gaseous effluents
- Pushbroom-scanned, jitterresistant
- Ground-based applications also


# The Zepherus Project Proposal

Airborne engineering prototype

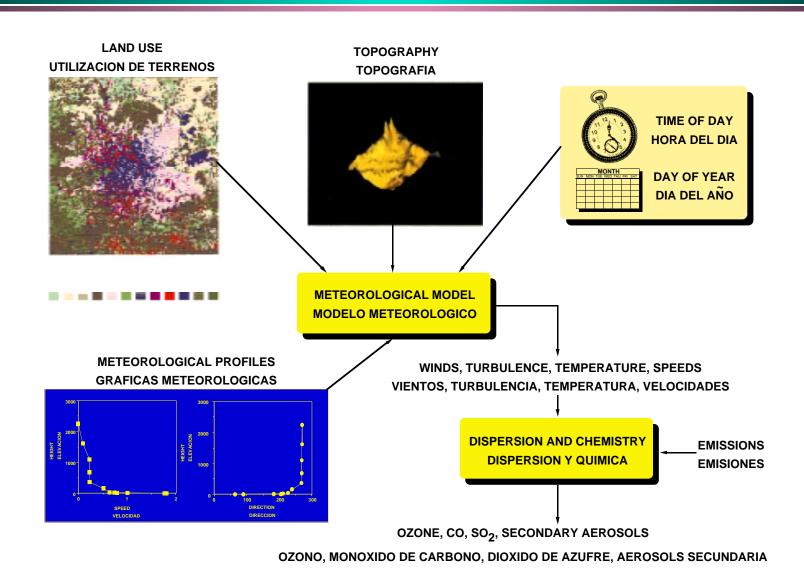
Regional wind mapping demo




#### **Ground Experiments**






Small SAT Global Wind Measurement Concept Demonstration



- True global coverage
- Improved match to meteorology requirements
- Good representativeness
- High utility for operational mission

Concept/technique development Atmospheric data collection Meteorology research

# **Urban Pollution was Modeled in Detail for Mexico City**



## Plans for FY97

#### Measure 3

LANL role in national NBC program

## **Target**

A clearly defined Lab program beginning in FY97 that engages our best efforts from across the Lab in support of DOE, DoD, and other federal agencies

#### FY97 IPD

Small group of TSMs from CST, LS, NIS, and TSA
Technical guidance to DOE/NN 7 thrust areas
Develop 5-year NBC program plan
Work with other potential sponsors such as DoD & IC
Individual program development

# FY97 LDRD/PD Projects \$900K

Decontamination of Chemical and Biological Warfare Agents in the Urban Arena W. Earl and Gary Selwyn

Field Detection of Chemical Agents by Membrane Introduction Mass Spectrometry

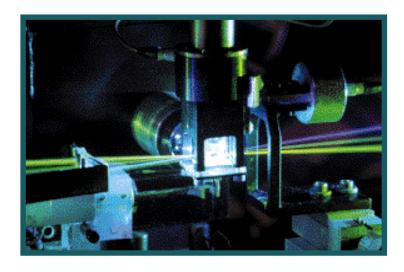
P. H. Hemberger

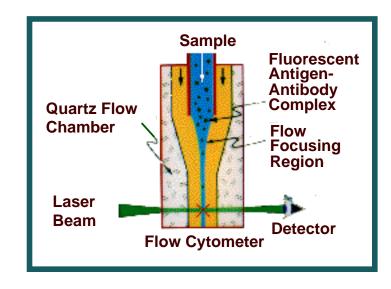
**Smart Chemical Agent Detection System Karen Grace** 

Universal Bio Agent Point Sensor Program Development
G. Salzman

Smart Film Sensors for CW Agents

B. Swanson

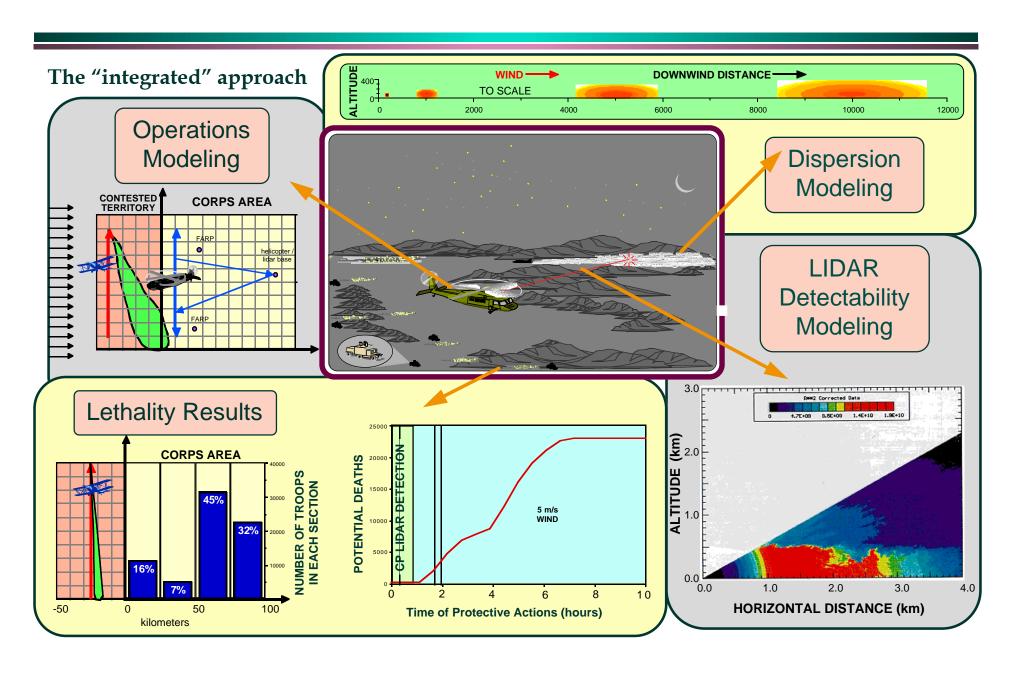

Sensors for Point Detection of Chemical and Biological Warfare Agents


T. Zawodzinski

# **Point Detection of Biological Agents**

#### **BIDS P31 Flow Cytometer objectives**

- Compact, lightweight, low power
- ♦ Automated, simple, rugged
- **♦** Rapid bioagent identification
- ◆ Specific bacteria and toxin ID
- Militarized






#### **MiniFCM**

- ♦ 60 lbs (with fluid)
- ◆ < 350 W
- No user adjustments
- **♦** High performance

# **CP-Lidar Architecture Study**



# JBREWS: Joint Biological Remote Early Warning System

JPO-BioDefense JBREWS Roadmap

**FY97** 

**Technology Assessment** 

End FY 97

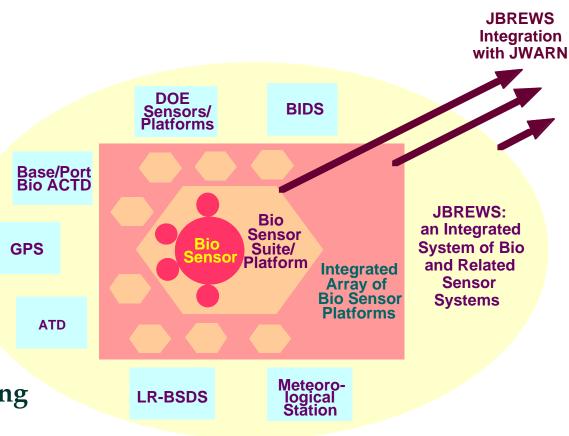
**Technology Selection** 

FY98 - Mid-FY99

**ACTD Development** 

Mid-FY99

**ACTD Demonstration** 


Mid-1999 - FY01

**Engineering Manufacturing** 

& Fielding Support

FY02 - FY03

**Production** 



LANL/LLNL System-of-Systems
JBREWS Approach

#### Increased funding in future years will draw upon Lab competencies

**Actinide Science** 

**Atmospheric/Groundwater Transport** 

**Bio/Chem Processing** 

**Counter-C/B Munitions** 

**Crisis/Consequence Management** 

Decontamination/Remediation

**Engineered Materials** 

Forensics/Attribution

**Genomics Sequencing** 

**Information Management** 

**Inhalation Toxicology** 

Lab-to-Lab and Foreign Technology Exchanges

Microelectronics/Microfabrication

**Modeling and Simulation** 

**Nuclear Design** 

**Explosive Science** 

**Policy and Treaty Technical Support** 

**Proliferation Analysis** 

**Radiation Safety** 

Risk Analysis

**Roboties/Automation** 

**Sensors/Detection Systems** 

**Systems Engineering/Integration** 

Tags & Seals

**Testing Protocols and Facilities** 

**Vulnerability/Consequence Analysis** 

Chem/Bio

Nuclear

Both Chem/Bio and Nuclear

# Internal WWW for NBC (under construction)

## **Repository for**

- ◆ R&D projects, deliverables, and PIs
- Program development activities and status
- Current and potential sponsors
- ♦ Links to other publications and WWW sites

Will contain this talk converted to PDF (portable document format)

//www-safeguards.lanl.gov/nbc\_activities/welcome.html